Name:	Maths Class:	4
_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	wiamis Class.	

SYDNEY TECHNICAL HIGH SCHOOL

Year 12 Mathematics Extension 1

HSC Course

Assessment 2

March, 2016

Time allowed: 90 minutes

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A BOSTES Reference Sheet is provided at the rear of this Question Booklet, and may be removed.

Section 1 Multiple Choice Questions 1-6 6 Marks

Section II Questions 7-12 60 Marks

QUESTION 1

O is the centre. Diagram is not to scale.

What is the size of x in degrees?

A. 110

B. 120

C. 130

D. 140

QUESTION 2

O is the centre. Diagram is not to scale.

What is the size of x in degrees?

A. 30

B. 45

C. 60

D. 75

QUESTION 3

Diagram is not to scale. What is the length of x in units?

A. 6

B. 6.25

C. 6.5

D. 6.75

QUESTION 4

Which of the following is not a possible

function for this curve?

A.
$$y = \cos 2x$$

$$B. y = \sin 2\left(x - \frac{3\pi}{4}\right)$$

$$C. \ y = \sin\left(2x + \frac{\pi}{4}\right)$$

$$D. y = -\cos 2\left(x - \frac{\pi}{2}\right)$$

QUESTION 5

For which values of x is the curve $y = x^3 - 3x^2$ both concave up and decreasing?

A. x > 1

B.
$$1 < x < 2$$

C.
$$0 < x < 2$$

D.
$$0 < x < 1$$

QUESTION 6

The graph of a derivative function is shown.

At which x value on the original curve y = f(x)

will a horizontal point of inflexion occur?

B.
$$x = B$$

C.
$$x = C$$

D.
$$x = D$$

QUESTION 7 (10 marks) Start a new page.

a) Write the exact value of
$$\sec \frac{5\pi}{4}$$

1

b) i) Differentiate
$$x(2x+1)^3$$

1

ii) Find the equation of the tangent to the curve
$$y = x(2x+1)^3$$
 at the point

2

where
$$x = -1$$
.

c) Differentiate
$$tan(sin 2x)$$

2

d) Solve
$$3\cos^2 x = \cos x$$
 for $0 \le x \le 2\pi$. Give solutions correct to 2 decimal places where necessary.

3

e) Find
$$\int \frac{x^2+1}{x^2} dx$$

1

QUESTION 8 (10 marks) Start a new page.

a) Find
$$\int (mx - k)^3 dx$$

1

b) The curve
$$y = ax^2 + bx$$
 has a gradient of 6 at (2,0). Find the values of a and b .

2

c) The area of the shaded segment is $100~cm^2$ and subtends an angle of $\frac{5\pi}{6}$ radians at the centre. Find the radius, correct to 1 decimal place.

- d) Given the curve $y = 1 2\cos\frac{\pi x}{5}$, x in radians.
 - i) Find the period of this curve.

1

2

ii) Find x intercepts for one period, $x \ge 0$.

2

iii) Sketch the curve for one period, $x \ge 0$. Show x and y intercepts.

2

2

QUESTION 9 (10 marks) Start a new page.

a) Using a neat diagram and a ruler, find an approximate solution to the equation

$$\sin\frac{x}{2} = 1 - \frac{x}{3}$$

- b) For the curve $y = \frac{-3x}{(x-1)^2}$:
 - i) What is the equation of the vertical asymptote?

1

ii) Find the stationary point and determine its nature.

3

iii) Examine the behaviour of the curve as $x \to \pm \infty$

1

- iv) Neatly sketch the curve. Use a ruler and show relevant features.
- 2
- v) Indicate, with an arrow, the location of a point of inflexion on the curve.
- 1

Do not find its coordinates.

QUESTION 10 (11 marks) Start a new page.

a) Evaluate $\int_{-\sqrt{7}}^{0} x\sqrt{16-x^2} \ dx$, using the substitution $u=16-x^2$

3

b) Find the shaded area:

3

c) Consider the largest cylinder with height h units and radius r units that can fit inside a sphere of fixed radius a units.

- i) Show that the cylinder has volume $V = \frac{\pi}{4} (4a^2h h^3)$.
- ii) Prove that the maximum volume of the cylinder is $\frac{4\pi a^3}{3\sqrt{3}} u^3$

QUESTION 11 (10 marks) Start a new page.

- a) Use Mathematical Induction to prove that $9^n 5^n$ is always divisible by 4, for all positive 3 integers n.
- b) i) On the same axes, sketch the curves $y = x^2$ and $x = y^2$. Show points of intersection.
 - ii) Find the magnitude of the area bounded by the two curves.
- c) The area between $y = 1 x^2$ and the coordinate axes is rotated about the y axis. yFind the volume of the generated solid.

QUESTION 12 (9 marks) Start a new page.

a) A, B, C, D are points on the circle, centre O.

AB = CD

2

i) Neatly redraw the diagram into your answer booklet.

ii) If $\angle DAC = x$ degrees, find the size of $\angle BAC$ in terms of x. Give reasons.

3

b) The curve shows a function y = f(x).

Neatly sketch a possible curve for y = f''(x).

Show corresponding positions P to T on your graph.

3

c) The shaded area below is rotated about the x axis.

Use Simpson's Rule and five function values to estimate the volume of the generated

3

solid. Give your answer correct to one decimal place.

> OLUTIONS (8) a) (mx-k)++c c) y = sec (sin 2x) x cos2x x 2 (D-D gives 6- = -6 $h \rightarrow 1$ $y' = 1(2x+1)^3+3(2x+1)^2\times2\times2$ Sub- in @ gives 4 a-12 >0 b-) y= 20x + b. Atx=2, y=6 1,0=4a+2b-10 .. tengent is y-1 = -7(x+1) (i) x=-1 -> y =-1-6(1) Ax == 2, y=0 :. 6=4a+6- -O = 2 sc2 (sin 2x) as 2 = (2x+1) 3 + 6x (2x+1)2 = - 52 mr=-7 and (-1,1) ショー) メー6 37720 .ρ 11 W 8 6 0 B A) 1) parisa = 2th = 10 c) {12(0-mis) = 100 (c) ((1+x-2) du 12 (5%-12) = 200 12 200 x 6 ンナメーメル d) 3052x-05x=0 r= 9.7 (1 dac.) Cos x(300x-1) >0 G 20 0 - 2 50 x=\frac{7}{2}, 3\frac{7}{2}, 1.23, (e) \(\rapprox\)

(6) a)
$$\int_{-\sqrt{5}}^{\infty} x \int_{16-x^{2}}^{\infty} dx = \int_{0}^{\infty} x \int_{0}^{\infty} x \int_{0}^{\infty} dx$$

$$\frac{dx}{dx} = 2x \quad x = 0$$

$$\frac{dx}{dx} = \frac{dx}{2x} \quad x = 16$$

$$= -\frac{1}{3} \left(64 - 27 \right)$$

$$= -\frac{3}{3} \left(64 - 27 \right)$$

b) Area = square - area to x axis | c) i)
$$V = W^2h$$

= $[x] - \int_0^1 (2x - x^2) dx$ and $a^2 = (h^2 + h^2) - (h^2 - h^2) dx$ and $a^2 = (h^2 + h^2) - (h^2 - h^2) - (h^2 - h^2) dx$
= $[1 - \sqrt{1}]_0^2 - [1 - \sqrt{2}]_0^2 - [1 - \sqrt{2}]_0^2 + [1 - \sqrt{2$

c) ii) max vol. when dv =0 dt = Tr (42-3/2) =0 3/2 = 4a" 1 2 2 S

and Vmax = 74 (4a x 2 - 8a3)

= II (Pa - Pa 3)

: maxivol occurs when h = 20

レニュを(しゅん)くのないなんん、

from max, vol.

a) prove true for n = 1, 9'-5' = 4, which is divis. by 4.

= Ty (240 3-523)

= 4 11 as us as regd.

Assume true for note, is assume that 9k-5k = 4p for some intager P.

Nove there for a = k+1 , i.e. prove that 9 kt - 5 kt = 46 for some witager it.

for all positive integers n. be true for a -1+1-2, then a -2+1-3 and so ea Since the coult is true for n=1, then it must Now, 9'k+1 -5 k+1 = 9x9k-5x5k - 40 since 9P +5h is integral = 9x (+ 10+5h) -5x5h from = 360 + 4x5h = 4(9P+5k)

= 2.2 " (1 dec.)

